Algebra 1 End-of-Course and Geometry End-of-Course Assessments Reference Sheet

Volume/Capacity

Total Surface Area

Volume/Capacity			Total Surface Area
\square	Rectangular Prism	$\begin{aligned} V & =b w h \text { or } \\ V & =B h \end{aligned}$	$\begin{aligned} & S . A=2 b h+2 b w+2 h w \text { or } \\ & S . A=P h+2 B \end{aligned}$
	Right Circular Cylinder	$\begin{aligned} & V=\pi r^{2} h \text { or } \\ & V=B h \end{aligned}$	$\begin{aligned} & \text { S.A. }=2 \pi r h+2 \pi r^{2} \text { or } \\ & \text { S.A. }=2 \pi r h+2 B \end{aligned}$
	Right Square Pyramid	$V=\frac{1}{3} B h$	$S . A .=\frac{1}{2} P \ell+B$
	Right Circular Cone	$\begin{aligned} V & =\frac{1}{3} \pi r^{2} h \text { or } \\ V & =\frac{1}{3} B h \end{aligned}$	S.A. $=\frac{1}{2}(2 \pi r) \ell+B$
\bigcirc	Sphere	$V=\frac{4}{3} \pi r^{3}$	S.A. $=4 \pi r^{2}$

Sum of the measures of the interior angles of a polygon $=180(n-2)$
Measure of an interior angle of a regular polygon $\quad=\frac{180(n-2)}{n}$
where:
n represents the number of sides

Algebra 1 End-of-Course and Geometry End-of-Course Assessments Reference Sheet

Slope formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

where $m=$ slope and $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are points on the line

Slope-intercept form of a linear equation

$$
y=m x+b
$$

where $m=$ slope and $b=y$-intercept

Point-slope form of a linear equation

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

where $m=$ slope and $\left(x_{1}, y_{1}\right)$ is a point on the line

Distance between two points

$$
\begin{aligned}
& P_{1}\left(x_{1}, y_{1}\right) \text { and } P_{2}\left(x_{2}, y_{2}\right) \\
& \quad \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{aligned}
$$

Midpoint between two points

$$
\begin{gathered}
P_{1}\left(x_{1}, y_{1}\right) \text { and } P_{2}\left(x_{2}, y_{2}\right) \\
\quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
\end{gathered}
$$

$$
\begin{array}{r}
\text { Quadratic formula } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

where a, b, and c are coefficients in an equation of the form $a x^{2}+b x+c=0$

Trigonometric Ratios

$$
\begin{aligned}
& \sin A^{\circ}=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos A^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan A^{\circ}=\frac{\text { opposite }}{\text { adjacent }}
\end{aligned}
$$

Conversions

1 yard $=3$ feet
1 mile $=1,760$ yards $=5,280$ feet
1 acre $=43,560$ square feet
1 hour $=60$ minutes
1 minute $=60$ seconds

1 cup = 8 fluid ounces
1 pint $=2$ cups
1 quart $=2$ pints
1 gallon $=4$ quarts
1 pound = 16 ounces
1 ton $=2,000$ pounds

1 meter $=100$ centimeters $=1000$ millimeters
1 kilometer = 1000 meters
1 liter $=1000$ milliliters $=1000$ cubic centimeters
1 gram $=1000$ milligrams
1 kilogram = 1000 grams

